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3.1 Introduction

In this introductory section, the language will be confined to prose and
informality. Later, we will propose a novel general mathematical framework,
within which our own as well as a number of other rigorous approaches may be
nested.

At the most trite level, serial and parallel systems are different because in the
former, sub-processes are taken up one at a time and only exactly when the pre-
vious sub-process is completed. In the latter, all sub-processes begin at the same
instant, although they may finish at distinct points in time. However, this truly ele-
mental distinction does not prevent mathematical descriptions of the two model
classes from often being equivalent (see Townsend, 1972, 1974).

We will first follow the tactics of specific earlier papers as well as Townsend
and Ashby (1983), especially Chapters 14 and 15, in delineating fundamental
ways in which architectures can be similar and also when they can differ. Sub-
sequently, a unifying and new foundational strategy will be pursued which unifies
the homologues and heterologues under a single metatheatrical umbrella. With this
strategy in place, we consider possibilities for empirical discriminability of serial
and parallel systems or data that allows for model mimicry.

A “system” will be the actual concrete thing itself and of course could be
realized in many ways from microchips to neurons. In order to keep the argot
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reasonably minimal, we define a “model” to actually be any class of stochastic
processes defined by axioms and/or sets of parameters.

Thus, an (admittedly simplistic) parallel system for recognizing pure tones
might be a set of tuning forks displayed on a table, each one associated with a
specific frequency. A serial rendition of the same kind of task might consist of a
sequential exposure of each tuning fork in turn.

Systems possess “processors” which work on the objects fed to them. The
“objects” may differ from one another in ways that might affect the time of a pro-
cessor to complete its individual task. For instance, it has been proposed that the
identity of an object could influence the processing time (Townsend, 1976; Snod-
grass & Townsend, 1980; Townsend & Evans, 1983; Townsend & Ashby, 1983;
Van Zandt & Townsend, 2012), with an important special case being match vs.
mismatch of an object to a target item.

The objects to be processed are often associated with one or more dimensions
of location. For instance, an auditory set of objects typically possesses a single
dimension or order, whereas a visual presentation of letters is usually characterized
by a two-dimensional spatial code.

We now turn to a list of informal properties that we associate with the common
and distinctive properties of serial and parallel systems. There are two concepts
that we use here that will require further formalization later. First, if the represen-
tation of an object might be changing in some meaningful way, we say that the
object or process is “being worked on.” We give a more formal definition of “being
worked on” in Definition 3.1. Second, a process is “finished” when there are either
no additional changes that will occur in that process or, if additional changes do
occur, they will have no effect on the system’s response. The formal definition of
“finished” is given in Definition 3.3.

1. Properties Held in Common by Parallel and Serial Systems

SP1 The physical properties of the objects can influence processing.
SP2 The order in which previously completed processes finished can influence

the processing of unfinished objects.
SP3 The processing times can influence system completion times.
SP4 The order in which the processes finish can influence system completion

times.
2. Distinctive Properties of Serial Systems

S1 At any point in time, at most one object is being worked on.
S2 If the processing of an object has not yet started, the properties of that object

cannot influence the processing of other objects.
S3 A preordained order of process completions can influence all processes.

3. Distinctive Properties of Parallel Systems

P1 At any point in time, any of the uncompleted objects may be being worked
on.

P2 Properties of unfinished objects can influence the processing of other
objects through processing interactions.
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P3 The order of unfinished process completions cannot influence those pro-
cesses.

Even before formalizing these properties, it is clear that there are plenty of
potential systems that could hold both distinctive properties of serial systems
and the distinctive properties of serial systems. For example, P1 only allows that
uncompleted objects may be worked on, but it does not require that they must be
worked on, so a system that processes only one unfinished object at time would still
satisfy this property. Hence, although it reduces the generality of the systems that
may be described within this purview, we also consider a stronger version of P1.

P1* At any point in time, any of the uncompleted objects must be being worked
on.

We will refer to parallel systems that satisfy P1* as strict parallel systems.
Alternatively, or additionally, we may also consider further constraint on the

class of serial systems. For example, the properties outlined thus far allow for a
serial system that can start processing an object, but then switch to another process
before the first is completed. This would then allow for properties of unfinished
objects to influence the processing of other objects, a property that we had nom-
inally reserved for parallel systems. Thus, we consider this further constraint on
serial systems,

S4 At any point in time, there is at most one process that has started but is not
yet finished.

We will refer to serial systems that satisfy S4 as strict serial systems. Note, along
with S4, S2 implies that unfinished objects cannot influence the processing of other
objects.

Strict serial models can thus be defined as a distribution on processing order of
the objects and a set of distributions for the processing of an object conditioned on
that object being the one worked on at a given time (which may be dependent on
processing order). Since only one object at a time is being processed, there is no
“present status” of processes associated with other objects to depend on, outside
of those completed in the past.

A parallel model can be defined as a distribution of processing where the ongo-
ing processing of individual items can potentially depend on the status of any other
process or object as well as the history to date of times and order of processing.
It is barred from letting the processing order be influenced by subsequent/future
order of processing.

We should note that a mental architecture designer, for instance nature, could
trade off the ability of a serial system to make its distributions depend on a preor-
dained order, with a dependence on historical events such as previous completion
time. In point of fact, both pre-set order and the developing history of completion
durations could be influential. Thus, the pre-set order could assign general distri-
butions, such as first is Weibull, second is gamma, and so on. Then, the gamma
rate parameter could be determined by the speed of the first stage, with a fast rate
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Figure 3.1 Illustration of a parallel and serial process identifying the shape
and shade of an object. For the parallel process, both the shape and shade are
worked on at the same time. In the serial process, the shape and shade are
worked on at different times. In the parallel process, the probability of the
order is a function of the completion time random variables, whereas the only
constraint on the probability of the order for the serial process is that it is a
probability (i.e., between 0 and 1).

if the first stage takes longer than 100 ms and a slow rate if it is faster than or equal
to 100 ms.

The question of empirical identifiability of the foundational distinction of pre-
determined order between parallel and serial processes will be discussed in a later
section.

The causally acceptable ability of serial systems, but not parallel systems, to
preselect the order of processing and processing time distributions (although not
the actual realized processing durations) only requires a state space of positions
of objects, but not of their composition, similarity to targets and so on. Examples
are feature extraction and/or perceptual distance of memory object to a probe item
(e.g., see Townsend, 1972). See Figure 3.1, which illustrates this parallel–serial
disparity.

On the other hand, the latitude allowed parallel systems to permit various object
processes to interact in ways so that states of processing of one (or more) pro-
cess to depend on that of others calls for a finer-grained description of objects.
For instance, feature extraction and computation of similarity to a probe item are
examples (e.g., see Townsend, 1972, 1976). See Figure 3.2, which illustrates this
parallel–serial disparity.

Our ensuing mathematical account will capture these notions more rigorously.
Mathematical modeling departs from statistics and, for the most part, psychomet-
rics, by way of the following precept (following Townsend & Ashby, 1983, chapter
15):

Principle of Correspondent Change
A. Empirical changes in the environment of a stimulating situation should be

reflected in a non-vacuous theory or model by corresponding changes or
invariances in the model or theory.
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Figure 3.2 Illustration of interaction in parallel and serial systems. Currently
processed information from one source can only affect present or future
processing of other sources. Thus, while parallel systems can share
information in both directions, serial systems can only share information from
earlier processed items to later processed items.

B. For any given empirical milieu and for any given class of models, there
will exist a set of subclasses where models are indistinguishable within their
subclass and in that specific milieu.

Principle of Selective Influence
The principle of selective influence (PSI) is a case of principle of correspondent
change (PCC) and is likely the most valuable instance to date. The original infor-
mal concept was that environmental manipulations can be found which, realized
stochastically, slow down or speed up two or more sub-processes (e.g., Stern-
berg, 1969). Initially, predictions were confined to mean RTs of serial systems,
although speculations were made about parallel systems. Additionally, Sternberg
(1973) suggested analyses of variance and higher order cumulants. Later, mean
RT predictions were offered for more complex systems (e.g., Schweickert, 1978).
It also came to be realized that assumptions about how an experimental factor
affected an object’s response time (RT) distribution were vital to proving claims
about parallel vs. serial and more complex architectures, even at the level of
mean RTs (Townsend & Schweickert, 1989; Townsend, 1984, 1990; Townsend
& Thomas, 1994). Theoretically deep aspects of PSI have been discovered by
Dzhafarov and colleagues in recent years (Dzhafarov, 2003; Dzhafarov, Schwe-
ickert, & Sung, 2004; Dzhafarov & Gluhovsky, 2006; Kujala & Dzhafarov, 2008;
Dzhafarov & Kujala, 2010; Zhang & Dzhafarov, 2015). The concept of selective
influence has been generalized by them and others (e.g., Schweickert, Fisher, &
Sung, 2012; Algom et al., 2015) to include other dependent variables such as
accuracy. The valuable construct of selective influence will be further discussed
subsequently.

The PCC is broader still, however, as can be seen in the contrast between the
causal confinement of parallel processes to the stochastic processes, dependence on
evolving history vs. the ability of a serial system to causally be a function of such
future orders. Such a fundamental distinction could, in principle, be associated
with observable differences in behavior, whether or not the investigator exploits
these differences via manipulation of selective factors.
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3.2 General Event Spaces: Formal Probability Theory

The fundamental concept of formal probability theory is that of a prob-
ability space. That space is given by a set of elements, usually denoted by �,
specified subsets of the full space for which a probability is defined, F , and the
probability associated with each of those subsets, P. Those triples (�,F , P) that
satisfy the constraints we summarize below are a probability space (also referred
to as a probability triple). In light of our discussion above, � could be the possible
completion times of each of the processes, (R+)n for n processes. Alternatively, �

could be the possible states of each of the processes at any time, Rn × R+, where
each of the dimensions of Rn corresponds to the activation state of a process and
R+ corresponds to time since stimulus onset.

The subsets in F can include any subsets of � that would normally be useful for
distinguishing serial and parallel processing, but not all subsets of � are required
to be in F . F must include the entire space � and its complement, the empty set
∅. Also, for any set A ∈ F , the complement Ac must be in F . F must also be
closed under countable unions and countable intersections. Thus, if A1, A2, . . . are
in F , then ∪i=1,2,...Ai and ∩i=1,2,...Ai must also be in F . When a collection of sets
satisfies these constraints it is called a σ -algebra or σ -field.

For modeling cognitive processing times, we want to be certain that intervals
are included in F . For example, we will need to refer to probabilities such as “the
probability that process A takes less than one second and process B takes between
two and three seconds.” The smallest σ -algebra on the real numbers that includes
all intervals is called the Borel σ -algebra. That this σ -algebra exists follows from
the famous Kolmogorov extension theorem (e.g., Billingsley, 1995, §3).

For P to be a probability measure, the probability of the empty set must be zero,
P(∅) = 0, the probability of the whole space must be one, P(�) = 1, and P
must be countably additive. Countable additivity means that for any disjoint sets,
A1, A2, . . . in F , the probability of the union of the sets (which must be in F) is
the sum of the probability of each set, P(∪i=1,2,...Ai) = ∑

i=1,2,... P(Ai).
In general, any probability measure that satisfies these conditions could be used

for modeling mental processing. In practice, models tend to take one of two forms.
Many modelers will specify the probability measure by associating the random
events with commonly used distributions, such as an exponential distribution or
a more complex distribution based on processing assumptions, such as the lin-
ear ballistic accumulator (Brown & Heathcote, 2008) or the drift-diffusion model
(Ratcliff, 1978). Alternatively, one can study systems by determining what infer-
ences can be made about the systems using only minimal additional constraints on
the probability measure (c.f. Townsend & Nozawa, 1995; Dzhafarov et al., 2004;
Zhang & Dzhafarov, 2015).

We mentioned random variables and distributions, with which the reader will no
doubt be at least minimally familiar, but these terms also have a more rigorous def-
inition within probability theory. A univariate random variable X is a measurable
function from the space � to the real numbers. To be measurable, the preimage of
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every Borel set under X must be in the σ -algebra, F , on �, i.e., for any Borel set
B, X−1(B) ∈ F .

Suppose, for example, that instead of working with a space � that is defined
on the response times, which are elements of R, � is the space of a participant’s
actions in an experiment. Then the elements of � are not real numbers, but actions.
To discuss response times, we would need to map from the space of actions to
the real number representing the time it takes for an action. The measurability
requirement allows one to work with probabilities of either the response time or
the actions because there are connections between the measurable sets F in � and
measurable (specifically Borel) sets in R.

The distribution, μ, of a random variable X is the function on the Borel sets that
gives the probability measure of the corresponding set in F given by X. Thus, if
B is a Borel set, then μ(B) = P(X−1(B)) = P(X ∈ B) where P is the probability
measure from the space on which X is defined.

A common practice in RT modeling is to assume that response times have a
familiar distribution, such as a gamma or Weibull distribution. This approach sets
the measure on the Borel sets on the real line rather than setting the measure on
a separate probability space of interest. In many cases, researchers are only inter-
ested in direct statements about the response time distributions, so there is no loss
in modeling them directly with a distribution. As we see below, there is some dan-
ger in ignoring the complexity of the processes that lead to the response time when
considering the effect of experimental variables on the response time distributions.

A single random variable can be quickly generalized to a multivariate random
variable or random vector. If X is an n-dimensional random vector, then each
dimension is a random variable on the same probability space. That is, each Xi

is a measurable function from the probability space to the real numbers. The ran-
dom vector has a probability distribution given by μ(B) = P(X ∈ B) = P(X1 ∈
B1, . . . , Xn ∈ Bn) when B is an n-dimensional Borel set. This measure μ is the
joint distribution of the random variables X1, . . . , Xn. Because each Xi is a random
variable, we also have the marginal distributions, μi(Bi) = P(Xi ∈ Bi).

From multivariate random variables, we can generalize to stochastic processes.
These are essentially multivariate random variables, but with a possibly infinite,
even continuous, index set. Formally, a stochastic process can be defined by the set
of random variables {Xt}t∈T on a probability space (�,F , P), where T is a possibly
infinite index set, such that for any finite subset A ⊂ T , {Xt}t∈A is a multivariate
random variable.1

Most commonly, a stochastic process is a process that unfolds over time so we
may be interested in the future values, {X(t), t > s}, given the value at a specific
time, X(s). In this case, we know more about the random variables as time pro-
gresses. For example, if we were using a stochastic process to model the movement

1 To be able to add constraints to stochastic processes that depend on an uncountable subset S ⊂
{X(t)}T , we need a more complex definition. While these constraints are important (e.g., continuity
of the sample paths), we avoid the additional detail here for the sake of brevity.
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of a mouse cursor across the screen, then at a given time t we would know where
the mouse had been at every time up until t, i.e., if X(s) is the cursor position at time
s, then we could have observed every X(s) for s ≤ t. The formal way of describing
this increase in knowledge over time is by specifying a collection of σ -fields that
increase over time: for all t there is a Ft ∈ F such that for any s ≤ t,Fs ⊂ Ft. This
type of collection of σ -fields is known as a filtration. We can capture an increase
in knowledge about a stochastic process over time by requiring that the random
variables X(t) are each Ft measurable where the collection of Ft is a filtration.

Stating that X(t) is measurable Ft means that the possible events of the system
X at time t are included in the σ -field Ft. Given a system X, there is a naturally
induced filtration constructed as the union of the smallest σ -fields for each t,

Ft =
⋃{

X(s)−1(B) : B is a Borel set
}

s∈[0,t]
.

For the induced filtration, it is clear that given Ft we have complete knowledge
about X(t), however, we do not necessarily know anything about X(t′) for t′ > t.

Example 3.1 Consider a single process X(t) defined at discrete points in time
t ∈ N. For each t, let X(t) be continuous random variables defined on R. Then each
Fi, where i ∈ N, can be thought of as the disjoint union of i copies of Borel sets.
So one event of F2, for example, is the disjoint union (2, 26) 	 (1, 5.56). An event
of F40 could be the disjoint union of 40 copies of (0, 1)!

Note two things from this example. First, the notion of a filtration is separate
from the individual probabilities associated with each X(t), although the example
makes no mention of any specific distribution. Second, we could define X(41) to
be a discrete random variable. Doing so would make it clear that F40 does not
imply anything about the subsets/events of {X(41)−1}. Generally, it is useful to
think about each {Xi(t)}t as independent continuous random variables.

The next important concept is of a conditional probability. Suppose we have
random variables X and Y on the measure space (�,F , P). In many cases we want
to examine the properties of X given knowledge of Y (for example, the response
times from trials when a person is correct). As long as the event we are con-
ditioning on has positive probability, then the traditional definition is sufficient,
P(X|Y) = P(X, Y)/P(Y). However, if P(Y) is zero, then this would suggest that
P(X|Y) is undefined or infinite. That might work if you were conditioning on cor-
rect or incorrect when there is no chance of the participant being incorrect because
we would never worry about conditioning on something that is impossible. But
what about conditioning on a particular response time? If a response time could be
any positive real number (or even any positive real number less than some upper
bound) then the probability that it is a specific value would have to be zero for
most values. Nonetheless, the response time must be some value. Suppose that we
observe a response time of 326 ms. In the conditional P(Correct | RT = 326 ms)
the probability of RT = 326 ms is zero.
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To deal with the issue of conditioning on measure zero events, conditional prob-
abilities are defined as a function of the conditioned variable, f (B) = P(Y|X ∈ B).
For this function to make sense, it needs to satisfy two requirements. First, the
function needs to be measurable with respect to X (actually σ (X): the σ -algebra
generated by X). Second, we want to preserve the equality P(X, Y) = P(X)P(Y|X).
Formally, we require that for all B ∈ σ (X),

∫
B P(Y|X ∈ B) dP = P(Y , X ∈ B)

where the dP refers to the measure P on the probability space.
The next concept from the theory of stochastic processes that we will need is that

of a stopping time. A stopping time is a random τ ∈ T such that {τ ≤ t} ∈ Ft for
all t in the index set T . For example the stopping time could be a fixed time, e.g.,
τ = 326 ms, or it could be based on some event that is measurable with respect
to F , e.g., τ is the first time that Xi(t) ≥ 10. For those familiar with information
accumulator models, they often assume information is accumulated up to some
threshold, then a response is made. In this case the response time is a stopping time
for the σ -field generated by the amount of information accumulated at each time
t. When discussing the exhaustive and first-terminating stopping rules for mental
processes in the next section, we will make use of the fact that if τ and ν are both
stopping times for a given σ -field, then so are the minimum and the maximum of
τ and ν.

In addition to the stopping times for processes, we will also be interested in
the order in which processes complete. For example, if the processes X1, X2 and
X3 complete at T1, T2 and T3, respectively, we may be only interested in whether
T2 < T1 < T3 or T1 < T2 < T3, etc. To refer to the first process to complete,
when we are not concerned with which process it is, we will use X(1) and similarly
T(1) for the completion time of the first process to finish and t(1) for a particular
observed value of the completion time of the first process to be finished.

With these fundamental concepts in mind, we now turn to a formalization of
the elementary properties of mental processes outlined in the introduction, using
stochastic processes.

3.3 Establishing Serial and Parallel Distinctions through the
σ -Spaces

We begin by formalizing the properties of serial and parallel systems
that we outlined above. To do so, we connect the informal idea of “processes”
developed above with the mathematical concept of adapted stochastic processes. If
there are n elements of information that the cognitive system is working with,
then we need a stochastic process corresponding to each of those elements,
{Xi(t), t ∈ [0, ∞)}i=1...n. Equivalently, we can represent these processes as an n-
dimensional stochastic process X(t), t ∈ [0, ∞). In this case, we can call each Xi

a sub-process. We also want this process to be adapted to preserve causality. Our
main goal is that future events do not change the present (i.e., X(t) is determined
by events in the past s < t or in the present, but not the future s > t). For this goal,
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it is sufficient that t is ordered in the sense that X(t) is measurable with respect
to the filtration Ft. To formalize the property that a serial system may have a pre-
determined order of processing, we allow that the order is measurable F0, i.e., that
the order might be set at t = 0 or some t < 0.

Example 3.2 For concreteness, suppose a person is asked to judge the size,
weight, and color of a ball. A reasonable assumption is that for each dimension of
the stimulus, the associated sub-process has the form of some information accrual

process such as Xi(t)
d∼ unif (ti1 , ti2 ) for each ti1 and ti2 functions of t. The simplest

case is to allow the ti1 = 0 and ti2 = t. Here, as time passes, the probability of
acquiring more information about each dimension grows linearly. Naturally, we
could impose some dependence across sub-processes, but for illustrative purposes
consider the independent case. We will refer to this example as needed throughout
the chapter.

The first distinguishing property of serial and parallel systems concerns “being
worked on.” We can formalize “being worked on” as follows:

Definition 3.1 Process i is being worked on at time t if there is no s > t such that
for all v ∈ (t, s],

P (Xi(t) = Xi(v)) = 1.

Less formally, for any amount of time that passes, there is a chance that Xi changes
state during that time. Similarly, if the process is not being worked on, there is
some amount of change in time for which there is no chance that the state will
change. If color processing is delayed as above, then color is not being worked
on for all t ∈ [0, T1). Note that, according to this definition, if Xi changes state
at deterministic intervals, then Xi is not being worked on during the interval. This
may seem odd for a discrete time system, but this can be mitigated by assuming
t, s, and v are positive integers in the definition.

Next, we need definitions for starting and completing processing.

Definition 3.2 A sub-process Xi(t) has started if for any s ≤ t, Xi was being
worked on at s. When the minimum (or infimum) of such s exists, s′, we say that
Xi started at s′.

In Example 3.2, we could delay processing of color until size has completed.
This would be realized as

X3(t)
d∼

{
0 if t ≤ T1

unif (0, t) if t > T1.

The processing of color hasn’t started until time T1.
To formalize process completion, we use the first passage (or first exit) time

concept.

Definition 3.3 Let each sub-process Xi(t) have a predetermined completion
region, θi ⊂ [0, ∞). We will say that Xi(t) is complete (or finished) if t ≥ τ =
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mins Xi(s) ∈ θi. For the system completion time, we have the completion region
� ⊂ Rn+ and say that the system has completed if t ≥ mint X(t) ∈ �. A system
may need all sub-processes to be complete (exhaustive system), or it may need
only a subset of the processes to be complete (referred to as a self-terminating
system).

Example 3.3 From Definition 3.3, we can consider the three sub-process system
X = {X1, X2, X3} described above with completion regions [1, 2], [3, 4], and [5, 6],
respectively. An exhaustive system can be constructed by defining � = [1, 2] ×
[3, 4] × [5, 6]. All sub-processes must be in their respective completion regions
simultaneously in order for processing to complete. Likewise, a self-terminating
system can be constructed by defining

� = [1, 2] × (−∞, ∞) × (−∞, ∞)

∪ (−∞, ∞) × [3, 4] × (−∞, ∞)

∪ (−∞, ∞) × (−∞, ∞) × [5, 6],

the union of infinite strips. Here any sub-process may enter its respective comple-
tion region for processing to complete.

One may wonder what happens after completion. Perhaps the simplest assump-
tion would be that processing stops, i.e., if τi is the completion time of Xi, then for
all t > τi, Xi(t) = Xi(τi). This has the advantage of connecting channel completion
times to system completion times with simple rules (e.g., the system comple-
tion time of an exhaustive system is the maximum of the sub-process completion
times). In some cases, requiring processing to stop upon completion leads to more
constraints, which may be unintuitive. For example, it precludes the possibility
that a participant might second-guess himself after responding. At the other end
of the spectrum, we could leave the process totally unconstrained, free to move
in and out of the completion region and free to have any continued processing
influence unfinished processes. For convenience, we take the middle ground and
assume that, although processing may continue after completion, the outcome of
the (sub-) process does not change and changes in sub-processes after they have
completed cannot influence other processes.

We now augment the framework to codify the properties that we outlined that
both serial and parallel systems should satisfy. We follow Dzhafarov (2003) by
limiting the probability space associated with a perceptual process to the internal
states of the system and assume that the environment in which the system oper-
ates is deterministic. This assumption is not necessarily required for our theory,
but it will simplify the connection between these systems and the theory of selec-
tive influence later in the chapter. Hence, we identify the probability space with
a particular configuration of the environment, i.e., if ζ indicates the specifics of
the environment, then the relevant probability space is

(
�ζ ,Fζ , Pζ

)
. This allows

for each of the processes defined on the space to be different under different envi-
ronmental conditions, and in particular, satisfies SP1. In fact, this formalization
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requires that the processes are different under different configurations of the envi-
ronment because equality (and almost-sure equality) in measure theory are defined
with respect to the underlying measure space. It may be possible that there are two
different probability spaces that nonetheless lead to exactly the same distributions
for Xt for all t even when the two event spaces are not equivalent. Hence, in keep-
ing with SP1, we also require that the environmental conditions are allowed to lead
to different distributions on Xt.

Property SP1 Let ζa and ζb be any two possible states of the world. Then it is
possible that

(
�,Fζa , Pζa

) = (
�,Fζb , Pζb

)
.

Property SP2 Let O(I) be the order of Ti for i ∈ I. If It = {i : Ti < t} then
σ (O(It)) ⊂ F(t).

Property SP3 For all i, σ (Ti) ∈ FT .

Property SP4 Let O(I) be the order of Ti for i ∈ I. If I is the set of all sub-
processes, then σ (O(I)) ⊂ FT .

S1 states that a serial system can only have one process being worked on at any
given time. Formally, this can be stated as follows.

Property S1 In a serial system, if, for any i, there is no s > t such that for all
v ∈ (t, s], P (Xi(t) = Xi(v)) = 1 then for all j = i, there exists some s > t such that
for all v ∈ (t, s], P

(
Xj(t) = Xj(v)

) = 1 (or, equivalently, P
(
Xj(t) = Xj(v)

) = 0).

Property S2 Let ζa and ζb be any two possible states of the world such that for
any process i that has been worked on by t, object i is the same in both ζa and ζb.
Then, in a serial system, Ft,ζa = Ft,ζb and Xa(t) defined on

(
�,Ft, Prζa

)
is equal in

distribution to Xb(t) defined on
(
�,Ft, Prζb

)
.

Property S3 Let O(I) be the order of Ti for i ∈ I. In a serial system, if I is the set
of all sub-processes and for all t > 0, it is possible that σ (O(I)) ⊂ F(t).

Consider again Example 3.1. Now suppose that the order of serial processing was
always color first. Then F0 would contain two events,

F0 = {{color first, size second, weight third}, {color first, size third, weight second}} .

Property S4 In serial systems, for all t, if there exists i such that 0 < Xi(t) < θi,
then for all j = i, either Xj(t) = 0 or Tj < t.

Property P1 In parallel systems, for all t, and all i such that Ti > t, it is possible
that there is no si > t such that for all v ∈ (t, si], P (Xi(t) = Xi(v)) = 1.

Property P1* In strict parallel systems, for all t, and all i such that Ti > t, there
is no si > t such that for all v ∈ (t, si], P (Xi(t) = Xi(v)) = 1.

Property P2 In parallel systems, for any object i under the state of the world ζa

such that Ti > t, if there exists another object j such that Tj > t, and another state
of the world ζb in which there is an object jb identical to object j from ζa, then it is
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possible that Ft,ζa = Ft,ζb and in particular that Xj(t) defined on
(
�,Ft, Prζa

)
may

not be equal in distribution to Xjb(t) defined on
(
�,Ft, Prζb

)
.

Property P3 Let O(I) be the order of Ti for i ∈ I. In parallel systems, if I = {i :
Ti > t}, then σ (O(I)) � F(t).

When S4 is assumed, i.e., strict serial systems, then S1 implies that the identities
of unfinished objects that are not being worked on cannot influence the processing
of other objects. Here, we use the filtration concept to encode the idea of what has
influence on an outcome. If object i is unfinished and not being worked on at time
t, then the processing of all objects j = i at time t cannot be influenced by object i.

Thus any set in Ft that one could condition upon when measuring the probabil-
ities associated with Xj contains no information about Xi. In parallel systems, it is
possible for information about unfinished processes to influence other processes,
so there is no such constraint on the filtrations.

3.4 Causality in Parallel and Serial Systems

Although the current definitions are similar in many ways to the def-
initions presented in Townsend and Ashby (1983), the use of filtrations and
adaptations are new. Townsend and Ashby (1983) defined models of parallel and
serial systems as probability triples associated with the sample space of sub-
processes’ completion times and orders, so they did not investigate the notion
of differences in the filtrations associated with parallel and serial models. We
are engaging the notion of filtrations to achieve our goals of more formally
constraining the definitions of parallel and serial systems with notions of causality.

In particular, for the models to maintain standard notions of causality, future
events should have no influence on past events. For example, the total system
completion time (i.e., exhaustive processing of all objects) should not influence
the completion time of the first of many sub-processes to complete. In terms of
adapted stochastic processes, the overall system completion time is not in the
adapted σ -algebra at the first sub-process’s completion time. For example, if there
are three sub-processes but only the first has finished (T1 < t < T2), then the
system completion time is not measurable Ft, i.e., it does not make sense to talk
about probabilities such as P(T ∈ [a, b]) or P(T ∈ [a, n]|T1 = τ ). However, if
t ≥ T , then both the system completion time and the first sub-process comple-
tion time are in the filtration Ft, which allows us to consider probabilities such as
P(T ∈ [a, b]|T1 = τ ) or P(T1|T = s).

3.5 Experimental Identifiability of Architectural Distinctions
of Causal Mental Systems

We now turn our attention to focus on the ways in which the under-
lying event spaces (i.e., the σ -fields) contrast between serial and parallel models.
These distinctions differ in their empirical consequences. Some lead to predictable
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and potentially testable differences even within very elementary experimental
conditions, whereas others require more subtle treatments.

The distinguishing characteristics given in the introduction and formalized in
Section 3.3 are not alone sufficient for the systems to always be distinct, because
each of the constraints on one system (e.g., that serial systems can have at most one
process being worked on) is only stated as something the other is allowed, but not
required, to do (e.g., in a parallel system, any unfinished process being worked on).
This leads to sufficient conditions for rejecting one class of system or the other, but
in cases where the constraint is satisfied, we are not able to distinguish between the
models. For this reason, we have also introduced a strict version of P1 to allow for
distinguishing between the two classes of systems.

First, suppose we can observe the filtration Ft for all t at which a process com-
pletes. As long as at least two sub-processes have not yet finished, then a serial
system is allowed to have more information about the order of processing in each
of those Ft than a parallel system. For example, if the serial system determines the
complete order immediately once processing begins, then the order is in Ft for all
t > 0. Because a parallel system cannot predetermine the order of processing, then
whenever there are still two unfinished processes, their order is not yet in Ft. Once
all but one of the processes has completed, that unfinished process will be the last,
so the order of processing is determined (i.e., in Ft). Because there is no require-
ment that serial systems must determine the full order before processing begins,
this is merely a sufficient condition for rejecting parallel systems.

Suppose instead that we have access to the complete distribution over the pro-
cesses when the system is finished, i.e., the distribution of X(s) for all s up to some
t greater than or equal to the total completion time of the system. In terms of fil-
trations, we have full knowledge of the distributions of random variables X that
are measurable Ft for some t greater or equal to the system completion time. We
want to emphasize that this information is about the probabilities associated with
different states of the system, not about particular sample paths that the system
actually follows. At this point the order of completion is measurable, whether the
system is parallel or serial, and hence the presence of order in the σ -field is no
longer a distinguishing factor. Nonetheless, based on this strong assumption, we
could easily distinguish between strict parallel and serial systems by conditioning
on the event that a particular object is being worked on at a given time and check
if any other processes are being worked on.

If, instead of accessing properties of the filtration and/or distributions, we only
have access to sample paths of the system, we can check sample path properties to
potentially reject serial systems.

Proposition 3.1 The derivatives of the sample path of at most one sub-process
from a serial system can be either be non-zero or non-existent at any t > 0.

Proof Consider a sample path xi of Xi that is not being worked on at time t. By
the definition being worked on, there exists some si > t such that for all v ∈
(t, s]i, xi(v) − xi(t) = 0 almost surely. Hence, for any v ∈ (t, s), the derivative
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of xi(v) exists and is zero almost surely. Now consider s = mini si for all xi that
are not being worked on at t (which exists as we are assuming a finite number
of sub-processes). Then the derivatives of the sample path of each of those sub-
processes exists and is zero for some interval after t. Because, in a serial system,
there is at most one sub-process being worked on at any t, there is an interval
after any t for which at most one sub-process’s sample path is either non-zero or
non-existent.

In contrast, in a strict parallel system, regardless of the interaction among pro-
cesses, there is some possibility that all of the unfinished processes change within
an arbitrarily small time interval of each other.

Proposition 3.2 In a strict parallel system, there is positive probability that for
some t > 0 and any ε > 0,

X1(t + ε) − X1(t) > 0 and X2(t + ε) − X2(t) > 0.

Proof Strict parallel systems must have all processes either being worked on or
finished at all times, so for any time t > 0 and ε > 0, if Xi are the sub-processes
that have not yet finished, the probability P [Xi(t + ε) − Xi(t) = 0] = 1. Hence, for
all i, P

[
Xi(t + ε) − Xi(t) = 0

]
> 0.

In practice, we may observe a sample trajectory on which no sub-processes
change within a given ε of one another. Nonetheless, if we continue to observe
more sample trajectories, we would eventually observe one or more processes
changing within the same ε interval, no matter how small the ε.

Next, we show that parallel and serial systems cannot be distinguished based on
the system completion times under a single experimental condition. Recall that the
system completion time distribution is only meaningful for Ft in which t is larger
than system completion time.

Proposition 3.3 Suppose we only have access to the distribution over completion
time (and hence also order) of the sub-processes in the system.2 Without further
restrictions, serial system and strict parallel systems cannot be distinguished at
this level.

Proof Consider an arbitrary serial process with distributions P(O) on the order
of processing and f (t1, t2, . . . , tn|O) on the time it takes to complete each sub-
process. Following Townsend and Ashby’s (1983) notation, we let the random
vector (A1, A2, . . . , An) be the vector in which each element gives the ordinal rank
in which that item finished. Then a parallel process can completely mimic the serial
distribution, f , by setting the completion time distribution of each object in the par-
allel system equal to the sum of the completion time of each object that completed
before it along with the objects’ completion time in the serial system. That is, for
every possible outcome ω ∈ �,

2 This is the same case that Townsend and Ashby (1983) examine in Chapter 14.
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Tp
i (ω) = Ts

i +
∑

j:Aj(ω)<Ai(ω)

Ts
j .

In particular, this means that the probability over orderings are the same for both
models.

We can use a similar mapping in reverse to arrive at a parallel system starting
from a serial system,

Ts
i (ω) = Tp

i (ω) − Tj:ai−aj=1(ω).

Under this reverse mapping, the density over orderings is given by

p =
∫ ∞

0

∫ ∞

t(1)

· · ·
∫ ∞

t(n)

g
(
t(1), t(2), . . . , t(n)

)
dτ(n) . . . dτ(1).

This mapping is quite general, so if the only observables are the intercomple-
tion times T (and hence the orderings), serial and parallel systems can be nearly
non-discriminable. Consider the system at the completion of the first process, t(1).
Under a serial system, the entire order of completion may be in the measure space
at t(1) and the ordering of later processes can influence t(1). This is, of course,
impossible in a parallel system. Unfortunately, if we cannot observe the ordering
at t(1), then there is no way to test whether future completion orderings have an
effect on t(1). Once we have observed the completion order, we could evaluate the
conditional probabilities,

P(τ1 ∈ T | 〈A, B, C〉) ?= P(τ1 ∈ T | 〈A, C, B〉).
However, by the above mapping, whichever pattern of dependence we observe in
a serial system can be mimicked by a parallel system.

Although the mapping holds in general, it can lead to some unintuitive conse-
quences. First, for a serial system, the probability of process a finishing first is the
sum of the density when a is first under order O1 = a, b, c plus the density when
a is first under order O2 = a, c, b. If we assume within-stage independence in the
parallel system (a system is within-stage independent if, for any interval of time
during which no sub-process completes, all sub-processes that have not yet finished
are independent on that interval), then for a parallel system to perfectly mimic this
system,

P(O1)fa1 (ta1 |O1) + P(O2)fa1 (ta1 |O2)

= P
(
Ta1 = ta1 < Tb1 , Tc1

)
P

(
Tb2 < Tc2

)+ P
(
Ta1 = ta1 < Tb1 , Tc1

)
P

(
Tc2 < Tb2

)

= ga1 (ta1 )Gb1 (ta1 )Gc1 (ta1 )

(∫ ∞

0
gb2 (t2)Gc2 (t2) dt2 +

∫ ∞

0
gc2 (t2)Gb2 (t2) dt2

)
.

This implies that distribution of the completion time of a when it is first in the
mimicking parallel system is given by
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Ga1 (t) = exp

⎧⎪⎨
⎪⎩−

t∫
ta1 = 0

P(O1)fa1 (t1|O1) + P(O2)fa1 (t1|O2)

P(O1)Fa1 (t1|O1) + P(O2)Fa1 (t1|O2) + · · · + P(O6)fc1 (t1|O6)
dta1

⎫⎪⎬
⎪⎭ .

Hence, while it may seem reasonable to assume that the serial system where
if a is first, its completion time has a gamma distribution, if b is first it has a
Weibull distribution and if c is first it has a truncated normal distribution, the mim-
icking parallel system would be required to have a mixture of those distributions
for the completion time of a when it finishes first. Nonetheless, there is nothing
theoretically preventing a parallel system from having such a distribution.

3.5.1 Distinguishing Parallel and Serial Systems with Selective
Influence Manipulations

One limitation of this early methodology was that the mathematical underpinnings
that justified the proposed experimental inferences were lacking. Although it had
long been known that the expectation of additive random variables, say T1 + T2,
would be an additive function, Sternberg was aware that α1 might non-selectively
affect T2, or the other way around. However, it was later shown that even with αi

affecting the proper sub-process directly if, say, T2 was correlated with T1 (e.g.,
T2 tends to be faster if T1 was slow and vice versa), then selective influence at the
level of the mean RT would usually fail (e.g., Townsend, 1984).

More importantly, if selective influence was assumed to take place at a stronger
level, for instance, ordering the distributions such that, say, F1(t1|α1) > F1(t1|α∗

1)
if and only if α1 > α∗

1 , then other architectures could also be tested, in
particular parallel architectures (Townsend, 1984, 1990). Furthermore, diverse
architectures could be assessed at the far more powerful level of distributional
functions (Townsend & Nozawa, 1995; Schweickert, Giorgini, & Dzhafarov, 2000;
Dzhafarov et al., 2004).

An important issue has long been how and when selective influence, in the
sense of invariance of the marginal distribution of a random completion time (e.g.,
T2) marginalized over the other random times (e.g., T1) might be realized (e.g.,
Townsend & Ashby, 1983, chapter 11) if sheer stochastic independence was not in
force. Although a completely global answer to this question has not yet appeared,
Dzhafarov (2003) proposed that the definition of selective influence be as follows:

Definition 3.4 The factors α1, α2, . . . , αn selectively influence the random
variables X1, X2, . . . , Xn if there exists a set of independent random variables
C, S1, S2, . . . , Sn that do not change as a function of any αi, and measurable
functions λ1, λ2, . . . λn such that

X1 = λ1(α1, S1, C), X2 = λ2(α2, S2, C), . . . X1 = λn(αn, Sn, C).

The reader may observe that although the X1 and X2 in the definition are not
independent, they are conditionally independent (given C). A key consequence
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of this conditional independence is that the major theorems on testing of vari-
ous architectures (Townsend & Nozawa, 1995; Schweickert et al., 2000; Houpt &
Townsend, 2011) go through unimpeded (Dzhafarov et al., 2004).

We first consider the connection between selective influence on the object pro-
cessing times and the order in which those objects are completed. Above, we
maintained the possibility that the order in which the processes complete affects
completion time distributions in both serial and parallel systems (SP2). If a sys-
tem has SP2, then a factor that influences the likelihood of an object finishing in
a different order relative to other objects cannot selectively influence that com-
pletion time. Suppose that the factor associated with X2 makes it faster so that
for all ts P(T fast

2 ≤ t) ≥ P(Tslow
2 ≤ t) with strict ordering for at least some

t, where T fast
2 = λ2(αfast

2 , S2, C), Tslow
2 = λ2(αslow

2 , S2, C). Then, in a paral-
lel system, there is a higher chance that object 2 will be faster than object 1,
P(T fast

2 < T1) > P(Tslow
2 < T1), so α2 can in general influence what position

object 1 ends in. If the position in which object 1 finishes affects its completion
time distribution, then T1 with αfast

2 must be different from T1 with αslow
2 , but this

indicates a failure of selective influence. Alternatively, consider a serial system in
which the probability of object 1 being processed first is selectively influenced by
α1. If the probability of object 1 being first is higher, then the probability of the
other objects being first is lower. This means that α1 affects the position of the other
objects, so again, if the completion time distribution of the other objects depends
on their positions, then selective influence fails.

With selective influence, we can derive a necessary condition for parallel sys-
tems that is not necessary for serial systems based solely on observing the order in
which items complete. Selective influence implies marginal selectivity, so the dis-
tribution of any pair of completion times (Ti, Tj) does not vary based on factors that
selectively influence objects other than i and j. In particular, orderings in a parallel
system, i.e., P

(
Ti < Tj

)
, may be influenced by αi and αj but not by other factors.

This implies that the probability that object 1 is completed before object 2 is the
same regardless of the factors that influence the processing of object 3. Thus, in
a parallel system with selective influence, P (O(1, 2, 3) ∪ O(1, 3, 2) ∪ O(3, 1, 2)) is
invariant across levels of the factor associated with object 3. In contrast, in a serial
process, selective influence on the completion times does not preclude the possibil-
ity that the factors influence the processing order (as long as the completion time
distributions do not vary based on processing order).

We can derive another test for parallel processing using the total completion
times. If the system is parallel, then the total completion time for object i is Ti,
which is unaffected by the factor settings of all other objects. If the system is serial,
then the total completion time for object i is the sum of all completion times for
objects that complete before i and Ti. Suppose αj influences the processing time of
object j (j = i). If there is some positive probability that object j completes before
object i, then the total completion time for object i will sometimes include Tj and
hence be influenced by αj.
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Another thing to note about the mapping between parallel and serial systems is
that the distribution over orderings in a serial system can be independent of pro-
cessing time distributions and can even be unrelated to the objects to be processed.
On the other hand, in a parallel system, the ordering is dependent on relatively how
fast each process completes, which can certainly vary based on object properties
(SP1, P3) and even on other processes (P2). Hence, if the order in a serial system
does not depend on object properties, then it can be distinguished by examining
whether the distribution of order is influenced by changes in the object properties.
This leads us into the next section on distinguishing serial and parallel systems
when there is an option to selectively influence a process.

Example 3.4 As a special case, there is the situation when the processing order is
deterministic, e.g., a particular order has probability 1. Intuitively, this should only
be possible for serial systems. However, the outlined properties do not trivially
constrain parallel processes so much that they cannot have this property. Con-
sider a three sub-process system as in Example 3.3. Thus, the stopping regions
are [1, 2], [3, 4], and [5, 6] for each respective sub-process X1, X2, and X3. Now
allow the sub-processes to have the following construction:

• X1(t) follows a unif (0, 1) distribution for each t ≤ 2 and follows unif [1, 2]
distribution for t > 2.

• X2(t) follows a unif (0, 1) distribution for each t ≤ 3 and follows unif [3, 4]
distribution for t > 3.

• X3(t) follows a unif (0, 1) distribution for each t ≤ 4 and follows unif [5, 6]
distribution for t > 4.

Each Xi is being worked on from time 0 until it is complete. Also, each sub-process
Xi is guaranteed (probability = 1) to finish at time t = i + 1. Thus, the processing
order is deterministic. Note that modifying the definition of “being worked on” to
require that the process could finish at any time, not just change state, would negate
this example.

Finally we come to the classic survivor interaction contrast tests developed
by Townsend and Nozawa (1995) and extended by Schweickert, Dzhafarov and
colleagues (Schweickert et al., 2000, 2012; Dzhafarov et al., 2004; Zhang &
Dzhafarov, 2015).

Consider first a system with two independent sub-processes that can be sped up
and slowed down by selective influence manipulations. The survivor interaction
contrast is defined by an interaction contrast of the survivor functions of the system
completion times under two levels of the selective influence manipulation on each
sub-process. In particular, suppose there is some manipulation that speeds up or
slows down each process selectively,

TH
1 = λ1

(
αH

1 , S1
)

TL
1 = λ1

(
αL

1 , S1
)

such that for all t, P
(
TH

1 > t
) ≤ P

(
TL

1 > t
)

with strict inequality for some t, i.e.,
TH

1 stochastically dominates TL
1 .
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The survivor interaction contrast is given by

SIC(t) = (
SLL − SLH) − (

SHL − SHH) = (
FHL − FHH) − (

FLL − FLH)
.

In a parallel system that stops as soon as either process has finished and inde-
pendence between T1 and T2, the survivor function for the system completion time
is given by the probability that neither of the processes have completed by time t,

S(t) = S1(t)S2(t).

Hence, the survivor interaction contrast can be rewritten as

SIC(t) = (
SL

1(t)SL
2(t) − SL

1(t)SH
2 (t)

) − (
SH

1 (t)SL
2(t) − SH

1 (t)SH
2 (t)

)
= SL

1(t)
(
SL

2(t) − SH
2 (t)

) − SH
1 (t)

(
SL

2(t) − SH
1 (t)

)
= (

SL
1(t) − SH

1

)(
SL

2(t) − SH
2 (t)

)
.

Because of the stochastic dominance assumption, each term in the product must be
positive so the product is positive and hence the survivor interaction contrast for a
parallel, first-terminating process is positive for all t. Intuitively, we might expect
this from the interaction contrast because the minimum of the two sub-processes
should be affected more by going from L to H when the other sub-process is L
compared to going from L to H when the other sub-process is already H.

If the parallel system stops only when both sub-processes complete, again
assuming independence between T1 and T2, then the survivor function for the sys-
tem completion time is given by the probability that neither sub-process is still
continuing,

S(t) = 1 − (1 − S1(t))(1 − S2(t)) = S1(t) + S2(t) − S1(t)S2(t).

The survivor interaction contrast is given by

SIC(t) = (
SL

1(t) + SL
2(t) − SL

1(t)SL
2(t) − (

SL
1(t) + SH

2 (t) − SL
1(t)SH

2 (t)
))

− (
SH

1 (t) + SL
2(t) − SH

1 (t)SL
2(t) − (

SH
1 (t) + SH

2 (t) − SH
1 (t)SH

2 (t)
))

= (−SL
1(t)SL

2(t) + SL
1(t)SH

2 (t)
) − (−SH

1 (t)SL
2(t) + SH

1 (t)SH
2 (t)

)
= SL

1(t)
(−SL

2(t) + SH
2 (t)

) − SH
1 (t)

(−SL
2(t) + SH

2 (t)
)

= (
SL

1(t) − SH
1 (t)

)(
SH

2 (t) − SL
2(t)

)
.

Again, relying on stochastic dominance from the selective influence manipulation,
the first term in the final product is positive for all t while the second term is
negative for all t, indicating that the survivor interaction contrast for the parallel,
exhaustive condition is negative for all t. The intuition for this result mirrors the
intuition for the parallel, first-terminating model. If the slowest of the processes
determines the system completion time, then going from L to H when the other
process is already L will have less of an effect than going from L to H when the
other process is H.



124 J . W. H O U P T et al .

In a serial system that stops as soon as either sub-process is finished that has
some probability p of a particular sub-process being processed first (and assuming
that the selective influence manipulations on the sub-process completion times do
not affect p), the completion time distribution is

F(t) = pF1(t) + (1 − p)F2(t).

Hence, the survivor interaction contrast is

SIC(t) = (
pFH

1 (t) + (1 − p)FL
2 (t) − pFH

1 (t) − (1 − p)FH
2 (t)

)
− (

pFL
1 (t) + (1 − p)FL

2 (t) − pFL
1 (t) − (1 − p)FH

2 (t)
)

= (
(1 − p)FL

2 (t) − (1 − p)FH
2 (t)

) − (
(1 − p)FL

2 (t)

−(1 − p)FH
2 (t)

) = 0.

Finally, for the serial model which requires both sub-processes to finish, the
distribution is the convolution of the completion time density of one sub-process
with the completion time distribution of the other sub-process,

S(t) =
∫ ∞

0
f1(s)S2(t − s) ds = f1 ∗ S2.

This means the survivor interaction contrast is given by

SIC(t) =
(∫ ∞

0
f L
1 (s)SL

2(t − s) ds −
∫ ∞

0
f L
1 (s)SH

2 (t − s) ds

)

−
(∫ ∞

0
f H
1 (s)SL

2(t − s) ds −
∫ ∞

0
f H
1 (s)SH

2 (t − s) ds

)

=
∫ ∞

0

(
f L
1 (s)

(
SL

2(t − s) − SH
2 (t − s)

)

− f H
1 (s)

(
SL

2(t − s) − SH
2 (t − s)

))
ds

=
∫ ∞

0

(
f L
1 (s) − f H

1 (s)
) (

SL
2(t − s) − SH

2 (t − s)
)

ds.

Due to the stochastic dominance from the selective influence manipulation, the
difference of survivor functions in the product will always be positive, so the dif-
ference of densities determines the sign of the integrand. Because of the dominance
on the first sub-process, f L

1 (t) must be smaller than f H
1 (t) for some range of time

(0, t∗), so the integrand, and hence the SIC, is negative for some initial range of
times. To verify that the SIC is also positive for some range of time, it is sufficient
to show that the integrated SIC is 0. Because of the relationship (for positive ran-
dom variables),

∫ ∞
0 SX(t) dt = E[X], the integrated survivor interaction contrast is

the interaction contrast of the means,
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∫ ∞

0
SIC(t) dt = (E

[
TLL] − E

[
TLH]

) − (E
[
THL] − E

[
THH]

).

Because the expectation is a linear operator, E[T] = E[T1] + E[T2], so

∫ ∞

0
SIC(t) dt = (

E
[
TL

1

] + E
[
TL

1

] − E
[
TL

1

] − E
[
TH

1

])

− (
E

[
TH

1

] + E
[
TL

1

] − E
[
TH

1

] − E
[
TH

1

]) = 0.

In more recent work, Yang, Fifić, and Townsend (2012) demonstrated that, for most
cases, there is only a single zero-crossing for the serial-exhaustive survivor inter-
action contrast. For our current purposes, it is sufficient that we have demonstrated
that using the survivor interaction contrast with selective influence manipulations,
serial and parallel processes can be distinguished.

Although these proofs all depended on independence between the completion
time distributions of the sub-processes, as long as selective influence holds, the
same conclusions hold. By the selective influence definition above, the comple-
tion time of one sub-process is conditionally independent of the other sub-process
completion time given C. Hence, if we replace the densities, distributions and sur-
vivor functions above with the conditional versions, then the derivations hold for
the dependent, but selectively influenced, processes. To extend from there to the
unconditional distributions, note that the conditional holds when conditioned on
any C so the derivations above are true when integrated across all C, i.e., when C
is marginalized.

3.6 Discussion and Conclusions

In this chapter, it has been our goal to formalize the concepts of paral-
lel and serial systems in cognitive modeling. Based on this foundation, we have
endeavored to enumerate the contexts in which these systems are discriminable
and those contexts in which they can perfectly mimic one another.

This chapter is by no means the first treatise on this topic. Studies concerning
the identifiability of serial and parallel systems have appeared since the early days
of cognitive psychology. We have attempted to draw attention to the landmarks in
the development of this important topic, but because our goal was to illuminate the
issues of serial and parallel identifiability themselves rather than their history, we
have necessarily omitted direct reference to important works in this domain.

What we have done is to begin with a modification of the informal statement
of the shared and distinctive properties of parallel and serial systems posited by
Townsend and Ashby (1983). From there, we gave a brief overview of the neces-
sary measure-theoretic probability theory to introduce the concepts of filtrations
and adapted stochastic processes. We then used the formalism of an adapted
stochastic process as the foundation of our definitions of parallel and serial sys-
tems. The use of adapted stochastic processes has allowed us to formalize the
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notion that these systems should maintain causality, particularly the constraint that
the future should not influence the present. These formal systems were then used to
explore the necessary (and sometimes sufficient) conditions under which serial and
parallel systems may be discriminated. In many cases, serial and parallel structures
are only discriminable under selective influence manipulations, including some of
the most-used theorems that we covered, those concerning the survivor interaction
contrast.

As part of our development, we have also highlighted many instances in which
parallel and serial systems are not discriminable. This may serve as a cautionary
note to empirical researchers not to quickly label cognitive systems as parallel or
serial without considering these possible mimicking issues.

On a more positive note, we hope that these theoretical developments may
serve as a foundation for future research that might result in more, and more
powerful, tests for empirically discriminating between these two classes of
systems.
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